

Page 1 of 52

Verifiable Credentials in
Action

Detailed Technical Whitepaper v3.0

Verifiable Credentials in Action Technical White Paper

 Page 2 of 52

Contents

Introduction .. 3

Document purpose .. 3

Background .. 3

Glossary of terms ... 4

Verifiable Credentials Conceptual View ... 7

Key Roles .. 7

What is Verifiable Credential? ... 9

Technical Overview ... 10

Technical Choices ... 11

Issuer (e.g. DIA) Functional Capabilities .. 11

Holder App Functional Capabilities .. 16

Verifiable Data Registry Functional Capabilities .. 20

Verifier Functional Capabilities .. 21

Proposed Issuer Message Flow – Verifiable Identity Credentials Issuance by DIA 22

Proposed Message Flow – Verifiable Identity Credentials Presentation by Holder App .. 25

VC Issuance – Proposed OIDC Message Specification ... 28

VC Presentation Cross Device – Proposed OIDC Message Specification 44

What Next? ... 52

Next Steps .. 52

Verifiable Credentials in Action Technical White Paper

 Page 3 of 52

Introduction

Document purpose
Verifiable Credentials will play a pivotal role in driving economic and social prosperity in New
Zealand. These credentials (and the wallets which hold them) will significantly improve access to
services for New Zealanders and empower citizens with greater privacy, choice, and control than
ever before. The purpose of the document is to:

• Describe detailed technical overview for issuing Verifiable Credentials and presenting
Verifiable Credentials with the Verifiers (aka relying parties) to obtain Verifier service
access or apply for entitlements, etc.

• Test the technical overview and technical choices with Issuers, Verifiers and Market
Participants within digital identity ecosystem.

• Gather feedback from policy, security, privacy, legal and technical teams and identify gaps
and any potential alternative options in the proposed technical overview.

It is essential to point out that the proposed technical overview articulated in this whitepaper is
not the final ecosystem architecture and tries to bring Issuers (e.g. DIA and other agencies),
Verifiers and Market Participants onto the same page. The technical whitepaper may require an
update and depends on the feedback received.

We are sensitive to and mindful of the future Digital Identity Services Trust Framework (DISTF) and
intend to align with the DISTF when this is established.

Background
The Department of Internal Affairs (DIA) oversees the RealMe platform, which serves today as the
New Zealand government's core digital identity provider. RealMe services have been recently
migrated to the cloud platform to allow RealMe to be fit for the future and DIA will continue to
operate RealMe services.

The Department is committed to supporting the Future State New Zealand Identity Ecosystem and
intends to transition to Verifiable Credentials over the coming years. DIA believes its role as
custodian of much of New Zealand's core life and identity data and its extensive experience in
managing and maintaining high-integrity identity records positions well to provide this vital
infrastructure.

The Department has written a white paper on transiting to verifiable credentials and has received
feedback from various stakeholders, including Verifiers and Market Participants. A key piece of
feedback concerned the need for more clarity about technical implementation and choices. The
Department has decided to develop this detailed technical overview white paper to address the
feedback.

Verifiable Credentials in Action Technical White Paper

 Page 4 of 52

Glossary of terms
The following terms are used in this document:

Term Detail

API API is the acronym for Application Programming Interface, a
software intermediary that allows two applications to transfer
personal information.

Authenticator An authenticator is a means used to confirm a user's identity, that
is, to perform digital authentication. A person authenticates to a
computer system or application by demonstrating that he or she
has possession and control of an authenticator.

Client Organisations Client organisations are the existing clients of RealMe, or the
receivers of the DIA issued Verifiable Credentials through Holder
App.

Credential A set of one or more claims related to the customer made by an
issuer.

Credential Issuance Service Credential service issues Verifiable Credentials to the Holder App.

Credential Repository A Credential Repository is a storage vault deployed on a personal
device or cloud service that stores and protects access to the
holder's Verifiable Credentials.

Customer A member of the public or user who enrols with the Client
Organisation services for applying for entitlements or creating an
account. Note that the customers can be enterprise workforce to
get Verifiable Credentials from the issuers.

DID Decentralised Identifier, A DID is a simple text string consisting of
three parts: 1) the DID URI scheme identifier, 2) the identifier for
the DID method, and 3) the DID method-specific identifier.

EIC Electronic Identity Credential (EIC) represents the verified identity
information, including Full Name, Date of Birth, Place of Birth,
Photo and Registered Sex and is regulated by the Electronic
Identity Verification Act 2012.

Issuer An issuer is a role an entity can perform by asserting claims about
one or more subjects, creating a Verifiable Credential from these
claims, and transmitting the Verifiable Credential to a holder.

https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers
https://www.w3.org/TR/did-core/#dfn-did-methods

Verifiable Credentials in Action Technical White Paper

 Page 5 of 52

Holder A holder is a role an entity might perform by possessing one or
more Verifiable Credentials and generating presentations from
them. Holders store their credentials in credential repositories.

Holder App Holder App is an example credential repository. Holder App acts
as an agent for the Holder that receives, stores, presents, and
manages Credentials and key material of the customer. There is
no single deployment model for a Holder App. Credentials and
keys can be stored/managed locally by the customer or by using a
remote self-hosted or third-party service.

Life data attributes They include full name, dob, gender, place of birth, passports,
citizenship status, etc.

ODIC OpenID Connect is an identity layer on top of the OAuth
2.0 protocol. It enables the Verifiers or client organisations to
verify the identity of the customer based on the authentication
performed by an Authorization Server, as well as to obtain basic
profile information about the customer in an interoperable and
REST-like manner.

Relying Party The relying party is a service provider offering customers digital or
in-person services and relies on external identity providers for
customer authentication and information.

RealMe FIT RealMe Federated Identity Tag is a unique identifier per which
represents the association between the Customer and the Client
Organisation’s privacy domain.

SAML Security Assertion Markup Language is an open standard for
exchanging authentication and authorization data between an
identity provider and a service provider aka relying party or client
organisation.

URI A Uniform Resource Identifier is a unique sequence of characters
that identifies a logical or physical resource used by web
technologies.

Verifier A verifier is a role an entity performs by receiving one or more
Verifiable Credentials, optionally inside a Verifiable Presentation
for processing. Other specifications might refer to this entity as a
relying party or OAuth client.

Verifiable Credentials in Action Technical White Paper

 Page 6 of 52

Verifiable Credential A Verifiable Credential is a tamper-evident Credential that has
authorship that can be cryptographically verified. Verifiable
Credentials can be used to build Verifiable Presentations, which
can also be cryptographically verified.

Verifiable Credential
Lifecycle Management

The Verifiable Credential lifecycle involves changing the credential
status based on changes to the verified identity record or a
notification from the Holder App regarding any changes to the
device authentication etc.

Verifiable Credential Status
Check

This is one of the future capabilities proposed as part of this white
paper. Verifiers query Issuer’s (i.e. DIA) status check capability to
confirm the status of Verifiable Credential that they have received
from the Holder App.

Verifiable Data Registry A role a system might perform by mediating the creation
and verification of identifiers, keys, and other relevant data, such
as Verifiable Credential schemas, revocation registries, issuer
public keys, and so on, which might be required to use Verifiable
Credentials.

Example of verifiable data registries includes trusted databases,
decentralized databases, government ID databases, and
distributed ledgers. Often there is more than one type of
verifiable data registry utilized in an ecosystem.

Verifiable Identity
Credential

It is a Verifiable Identity Credential with a credential type as
“Identity Credential” and verified identity information of an
individual, which includes Full Name, Date of Birth, Place of Birth,
Photo and Registered Sex.

Verifiable Presentation A Verifiable Presentation is a tamper-evident presentation
encoded in such a way that authorship of the data can be trusted
after a process of cryptographic verification. Certain types of
Verifiable Presentations might contain data that is synthesized
from, but do not contain, the original Verifiable Credentials.

Verified Identity Store DIA's register for saving the verified identity record for the
customers. The customer's verified identity record contains their
full name, place of birth, date of birth, registered sex and verified
photo, and links to the authenticator (s).

Table 1: Glossary of Terms

https://www.w3.org/TR/vc-data-model/#dfn-verify
https://www.w3.org/TR/vc-data-model/#dfn-verifiable-credentials
https://www.w3.org/TR/vc-data-model/#dfn-verifiable-credentials
https://www.w3.org/TR/vc-data-model/#dfn-verifiable-credentials

Page 7 of 52

Verifiable Credentials Conceptual View
The customers want to have Control over their identity information, Choice about when, how and
to whom it is asserted as proof of identity and the Portability of those attributes and credentials
for ease of use, and Trust that their information is private and secure. Issuing the life data
attributes as Verifiable Credentials to the customers is a fundamental anchor for the digital
services ecosystem. It enables customers to bind their identity attributes to credentials they might
want from other private and public sector agencies.

The Department plans to issue the authoritative Verifiable Credential for the customers with their
core life data information (name, date of birth, place of birth, registered sex, and photo) to enable
a customer-centric identity ecosystem and the economy to function productively and make
customers' lives easier. Issuing Verifiable Credentials with identity information goes through a
rigorous identity-proofing process, ensuring the information is accurate and binding it to the
genuine customer's biometric information is a vital element of the issuance process.

Issuer(e.g. DIA)

Holder App

2. Go through Identity Proofing

3. Issues Verifiable Credential

Verifier

4. Presents
Verifiable Credential

Digital
Channel

In Person
Channel

Backoffice

Account

Figure 1: Verifiable Credentials Issuance and Presentation – Key Roles

Note: other agencies can be issuers of Verifiable Credentials based on the customer’s attribute
data that they hold, and they can use their own identify proofing methods or rely on external
services such as RealMe to issue Verifiable Credentials.

Verifiable Credentials in Action Technical White Paper

 Page 8 of 52

Key Roles
• Holder/ Customer: A customer or holder is a person who initiates the transactions for

obtaining Verifiable Credentials from issuers and provides consent for presenting Verifiable
Credentials to the verifiers.

• Issuer: For example, DIA acts as an issuer by creating a Verifiable Credential from the
RealMe verified identity or its authoritative information and transmitting the Verifiable
Credential to the customer’s preferred wallet. It has the potential to be fully automated
and/or may require back office manual checks. Other issuers follow their own proofing
process to issue Verifibale Credentials to the customers.

• Holder App: A Holder App is a mobile application with one or more Verifiable Credentials
and can generate presentations of the credentials, as appropriate. Holders store their
credentials in credential repositories (i.e. device or cloud-based identity hubs). There is an
assumption that the market will offer the holder app to the customers.

• Verifier: A verifier is a relying party that receives a Verifiable Credential from the holder,
optionally inside a Verifiable Presentation for processing.

Verifiable Credentials in Action Technical White Paper

 Page 9 of 52

What is Verifiable Credential?
The Verifiable Credential is a key enabler for the Future State New Zealand Identity Ecosystem,
enabling Portability, Control and Choice for the customer of their identity and other
attributes. DIA’s intends to support the Future State New Zealand Identity Ecosystem and key
customer outcomes by issuing Verifiable Credentials with the authoritative life data attributes we
hold for New Zealanders.

Customer

 Verified Identity
Information

Customer
Binding

Authenticator
Binding

Authenticator Registration

VC

Identity
Store

Authenticator &
Credential
Repository

 Figure 2: Example RealMe Verifiable Credential

The example diagram represents the connection between the Customer, Authenticator
(represented by a Holder App) and Verified Identity Information (represented by the identity
store).

The Customer and Verified Identity information relationship is marked as Customer binding. The
Verified Identity Information and Authenticator relationship is marked as Authenticator
Registration. The Authenticator and the Customer relationship is marked as Authenticator Binding.
The triangulation of these entities represents the Verifiable Credential.

The following are the key points regarding the Example RealMe Verifiable Credential:

• The customer’s RealMe verified identity record or authoritative information is stored in
DIA’s identity register as per current state.

• The customer is bound to their RealMe identity record through DIA’s identity proofing
process which involves knowledge, possession, and biometric checks in alignment with the
NZ Identification Management Standards.

• The Holder App is an authenticator linked to the RealMe verified identity (claimed identity
record) and bound to the customer.

• The Verifiable Credential with identity claims is persistent on the customer’s device and
cannot be altered as DIA signs the Verifiable Credential using DIA’s signing key.

Note: other agencies can be issuers of Verifiable Credentials based on the customer’s attribute
data that they hold, and they can use their own identify proofing methods or rely on external
services such as RealMe to issue Verifiable Credentials.

Page 10 of 52

Technical Overview

Key Store

Cloud Platform

Credential
Metadata

Store

Assert Credential Status APIVC Issuance Service

Authn
Endpoint

Token
Endpoint

Credential
Endpoint

Interface
Layer

Functions
API Layer

Create Consent Create Audit RecordValidate Holder App
Signature

DID Resolver
(did:web)

DID Register
(did:web)

DID Document
Store

Verifiable Data Registry

Create Credential Get Credential Status

Consent and
Audit Store

Data Layer

Credential Management
Portal Admin Layer

Register issuer didDIA Attributes

Create DID

Enrol User

Save Credentials
Create Consent Get Consents

Expire Consent

Get DID

Create Activity Audit

Get Credentials

Remove Credentials

Self Issued OpenID
Provider (SIOP)

Authenticator Binding
(Local/ External)

Holder App

Identity Functions

Credential
ManagementConsent and Audit Management

Issuer (e.g. DIA) - Verifiable Credentials Issuance Platform

Digital Service

Verifier (Relying Party)

Generate QR Code
(SIOP Request)

SIOP Response API

Validate Credential
Status

Get Issuer DID
Document

Verifier Functions

Passports

Citizenship

Birth Record

Identity Proofing

Query for Identity Record

VC
Holder

App

Consent,
Audit,

Credential
Store

Data Store

Create Proof

Verified Identity

Identity Check Service

RealMe Verified
Identity (IVS)

Query Attributes

Verify Identity

Authentication
(Local/ External)

Figure 3: Key Roles Functions - Technical Overview

Page 11 of 52

Technical Choices
The following are the key choices around design aspects DIA has identified based on the best
current knowledge. DIA is interested in feedback from other Issuers and Market Participants on
these choices.

• DIA intends to support selective disclosure and believes this can be achieved by issuing a
separate Verifiable Credential for each identity claim.

• DIA will implement OpenID Connect for Verifiable Credentials for issuing Verifiable
Credentials to the Holder App.

• DIA ‘s DID document will be stored in the did:web endpoint. DIA will host did:web ./well-
known endpoint in a public cloud environment to share its DID document.

• DIA will host the Verifiable Credential Assertion Status endpoint for the Verifiers to confirm
the validity of the Verifiable Credential.

• The Holder App stores received Verifiable Credentials in the secured location of the device.

• The Holder App shares the Verifiable Credentials with the Verifiers using the Self Issued
Open ID Provider Verifiable Presentation profile.

• The example Verifiable Credentials message format in this document is “ldp_vc”.

Issuer Functional Capabilities
Issuer capabilities help issue Verifiable Credential(s) to customers, which are trustworthy and
acceptable to the Holder Apps, Verifiers, and Identity ecosystem. The Issuer should manage the
Verifiable Credential(s) lifecycle, which includes updating, suspending, and revoking the Verifiable
Credential(s) to maintain its integrity.

Note: DIA expects the following capabilities to issue Verifiable Credentials to the Customer. DIA is
interested in feedback from the other Issuers and Market Participants.

Verifiable Credential (VC) Issuance Service

DIA is an issuer of Verifiable Credentials with identity claims and issues Verifiable Credentials
based on the binding of a person to a record held by DIA, which include:

• RealMe verified identity,

• NZ Passport or

• NZ Citizenship by Grant records.

VC Issuance Service is an OpenID Connect (OIDC) standard-based interface to orchestrate
customer functional flows for issuing Verifiable Credentials based on the Person record held by
DIA to the Holder App(s). The VC Issuance Service offers the following OIDC endpoints for the
Holder App:

Verifiable Credentials in Action Technical White Paper

 Page 12 of 52

• Authorization Endpoint: The Holder App redirects the customer with an authorization
request to the Authorization Endpoint of VC Issuance Service. The Authorization Endpoint
validates the authorization request and verifies the identity of the customer, which
typically includes user authentication at RealMe or real-time binding of the Person to a
record (i.e. NZ Passports or NZ Citizenship records) and gathers user consent on successful
identity proofing for issuing Verifiable Credentials. Upon successfully receiving identity
assertion from the DIA identity proofing services, the Authorization Endpoint returns an
authorization response with the Authorization Code to the Hoder App. The customer's
verified identity details will be stored in a temporary cache, which maps to the
authorization code and access token.

Optionally the Authorization Endpoint can also obtain an attestation along with the
passkey from an inbuilt device FIDO authenticator to allow the customers to login to
RealMe using their device as an authenticator.

• Token Endpoint: The Holder App sends a token request to the Token Endpoint with the
Authorization Code through a back channel. Upon successfully validating the Authorization
Code, the Token Endpoint returns an Access Token in the Token Response.

• Credential Endpoint: The Holde App sends a credential request to the Credential Endpoint
with the Access Token and the proof of possession of the public key to which Verifiable
Credential will be bound. Upon successfully validating the Access Token and signature
proof, the Credential Endpoint returns the Verifiable Credentials with identity claims in the
Credential Response.

Note: refer to the OIDC message specification section for VC issuance.

Identity Proofing

Identity proofing is a process of establishing an identity of the person based on the binding of a
person with the records held at the Issuer or relying on third-party Identity providers such as
RealMe.

DIA uses the following for an identity proofing to issue Verifiable Credentials.

• RealMe Verified Identity or

• Binding of a person to the NZ Passports Record in real-time or

• Binding of a person to the NZ Citizenship Record in real-time.

Create Consent Function API

The VC Issuance Service authorisation endpoint captures the customer consent for issuing
Verifiable Credentials with identity claims to the Holder App as part of the Verifiable Credential
issuance journey. The VC Issuance invokes Create Consent API to write a consent record in the
audit and consent datastore.

DIA as an issuer saves the following consent details:

• Consent Purpose for issuing Verifiable Credentials with identity attributes.

• Consented Attributes (i.e. full name, date of birth, place of birth, gender, verified photo)

• Consented relying party id (Holder App id)

Verifiable Credentials in Action Technical White Paper

 Page 13 of 52

• Consented Date Time

• Identity Record ID

• Holder App DID (did:key or did:jwk)

Note: the consent event will be stored in consent and audit datastore.

Create Audit Record Function API

The VC Issuance Service invokes the Create Audit Record Function API to create an audit record of
every step involved in the VC issuance process to support non-repudiation requirements.

DIA as an issuer saves the following audit details:

• Audit Event Creation Date

• Audit Text

• Audit Type (user, system etc)

• Relying Party ID (Holder App id)

• Identity Record ID

• Holder App DID (did:key or did:jwk)

Note: the audit event will be stored in consent and audit datastore.

Validate Holder App Signature Function API
The VC Issuance Service Credential Endpoint receives a credential request from the Holder App
with the signature proof as a signed JSON Web Token (JWT). The Holder App signs the JWT using
its private key. The VC Issuance Credential Endpoint calls this API to validate the Holder App
signature of JWT. The public key of the Holder App can be part of the issuer claim and expressed
as either did:jwk or did:key format.

Note: Refer to the OIDC message specification for issuance.

Create Credential Function API

On successful verification of JWT signature, VC Issuance Credential Endpoint invokes this API for
creating a Verifiable Credential. The API request contains the following parameters:

• Messaging standard format (JSON-LD or JWT)

• JSON Claims

The API creates the Verifiable Credential(s) and the following are the key points regarding
Verifiable Credential(s):

• Verifiable Credential contains user claims and issuer’s signature.

• Issuer signs Verifiable credential(s) using their signature key. The issuer’s signing public key
can be provided through did:web endpoint.

• Verifiable Credential contains Issuer identifier as did:web:${issuer did endpoint name}, e.g.
did:web:diddoc.identityservices.dia.govt.nz.

• Issuer can issue multiple Verifiable Credentials to support selective disclosure use cases.

Verifiable Credentials in Action Technical White Paper

 Page 14 of 52

• The following credential metadata information will be saved in the credentials metadata
store:

o Credential Issuance Date – Verifiable Credential issued date.

o Credential Status (Active, Suspended, Revoked)

o Credential ID – the identifier of the issued Verifiable Credential

o Identity Record ID – the identifier of the verified identity record of the person.

o Credential Attributes – Attribute name or comma separated attribute names.

o Holder App DID (did:key or did:jwk)

Credential Management Portal

The Issuer (e.g. DIA) Administration team log in to the Credential Management portal using their
enterprise login credentials. The key objective of the Credential Management portal is to manage
the status of the issued Verifiable Credential. The Issuer should define new operating model for
credential management process which includes access, integration support, technical support and
contact centre support etc.

The Credential Management portal has the following key technical functions:

• Authentication and Access

The Administrators access the Credential Management portal using their enterprise login
through the Issuer’s IDAM federation. For example, DIA administrators access the portal
using their DIA credentials through Azure AD Federation.

• DID Document Management

The Issuer Administration team registers or updates the Issuer’s Decentralised Identity
(DID) Document with a Verifiable Data Registry through the Credential Management
portal.

• Search User

The Issuer Administrator team searches for the user using their identity details. The portal
retrieves an identity record from the identity repository. On successful identity retrieval,
the portal queries the credential metadata store using the identity record ID. If identity and
associated credential metadata are found, the user summary page is displayed with the
identity and associated credential metadata details.

• View Consent and Audit History

The Administrator team views the consent and audit history associated with the Identity
record. The Administrator team uses this information to confirm the caller's identity (i.e.
customer).

• Update Credential Status

The Administrator Team suspends or revokes the Verifiable Credential in case of suspicious
activity or fraud to maintain the integrity of the Verifiable Credentials. The Administrator
team can also suspend or revoke the Verifiable Credential if the person calls the Contact
Centre team for a lost device. The portal updates the Verifiable Credential status in the
Credential Metadata datastore.

Verifiable Credentials in Action Technical White Paper

 Page 15 of 52

Assert Credential Status API

The API receives Verifiable Credential(s) which were issued by the Issuer to provide the status of
the Verifiable Credential(s). This API will enable Verifiers to meet regulatory obligations. The API
can provide unique pseudonymous identifier such as RealMe FIT and Verifiable Credential status
(i.e., active, revoked, etc.). The API can also provide Verifiable Credential(s) status based on query
from the Holder App.

Key Store

Issuer Key Store component persists resources keys, shared secrets, and database connection
strings. The certificates and shared keys require an update, and the Issuer support team manages
the certificates and keys. The Administrator team updates the DID document in the Verifiable Data
registry (i.e. did:web endpoint) with a new signing public key using the Credential Management
portal.

Issuer Credential Data Model

Issuer Credential Data Model contains the following entities:

Activity Audit Event

• Audit Event Creation Date
• Audit Text
• Audit Type
• Relying party ID
• Holder App DID

Consent Event

• Consented Date
• Consent Purpose
• Consented Attributes
• Relying Party ID
• Holder App DID

Credential Metadata

• Credential Issuance Date
• Credential Status
• Credential Attributes
• Credential Expiry Date
• Holder App DID

Verified Identity

• Identity Record ID
• Identity Source

1

n n n

 Figure 4: Issuer Credential Data Model

Verifiable Credentials in Action Technical White Paper

 Page 16 of 52

Holder App Functional Capabilities
The Holder App enables customers to have Control over their identity information, Choice about
when, how and to whom it is asserted as proof of identity and the Portability of those attributes
and credentials for ease of use. There is an assumption that the market will offer the holder app to
the customers.

Defining the capabilities of the Holder App would ensure trust and completeness across the end-
to-end Verifiable Credential technical view. The following are the key functions of the Holder App:

Identity Function: Enrol User (Authenticator Setup)

The customer downloads the Holder App and installs it on their mobile device. One of the options
the Holder App can offer is face as an Authenticator. The customer sets up their face as an
Authenticator as part of the set-up. To enrol face as an authenticator, the Holder App confirms the
customer as a live human through liveness. The Holder App uses local or external biometrics
capabilities to enrol the customer's live face as an authenticator. The face template will be created
and stored on successful customer enrolment in the Holder App datastore. The Hoder App saves
identity record with the following details:

• Creation Date

• Face Template

• Holder App DID (did:key or did:jwk)

This white paper preferred Face as an Authenticator as it is one of the strongest authentication
methods. NZ Trust Framework rules will govern the Holder App providers to implement
appropriate Authenticator options.

Identity Function: Create Decentralised Identifier (DID)

On successful customer enrolment, the Holder App creates private and public key pair using the
Elliptic Curve Digital Signature Algorithm with the P-256 curve and the SHA-256 hash function
(ES256). It is an asymmetric algorithm that uses the ECDSA private key to generate signature
proof. The Holder App saves the private key in device secured location.

The Holder App creates did:key or did:jwk using the public key. The Holder App saves did:key or
did:jwk against the customer’s face template in the Holder App datastore. The Holder App DID
will be provided to the Issuer’s VC issuance service to obtain the Verifiable Credential. The Holder
App DID is subject of the Verifiable Credential.

Identity Function: Authenticator Binding
One of the options to bind the customer to the Holder App is through their Face. It can be through
Device-based Face Authentication like Passkey or custom biometric implementation supported by
the Holder App. The Holder App should confirm the liveness of the customer before enrolling their
Face if they support custom biometric implementation. The liveness evaluation includes:

• photo quality check for the customer enrolment,

• evaluation of liveness frames which includes anti-spoofing protection by using a
presentation attack detection algorithm. Tracking between frames in the video is used to
detect suspicious variations in facial location.

Verifiable Credentials in Action Technical White Paper

 Page 17 of 52

• creates face template of successful live face.

The Holder App uses its biometric libraries (local) or integrates with external biometric services to
confirm the liveness.

The Holder App can also use multifactor authentication through user knows, and user has factors.
Identity Function: Authentication
The Holder App can support multiple authentication options to authenticate the customer. The
Authentication options include:

• Multifactor Authentication using the user knows and user has factors.

• Face biometric authentication (Local or External): The Holder App confirms the liveness
before matching the live image against the enrolled face template to verify the authenticity
of the customer accessing the Holder App.

• Passkey and other authentication method etc.

Identity Function: Get DID
The Holder App uses this function to get DID associated with the Holder App. The Holder App DID
retrieves DID from the Identity record.

Identity Function: Create Proof
The Holder App uses this function to create signature proof by issuing signed JSON Web Token
(JWT) to the obtain Verifiable Credential(s) from the Issuer’s VC Issuance Service Credential
Endpoint.

Note: Refer to the OIDC Message Specification section for details.

 Identity Function: Self-Issued OpenID Provider (SIOP)
The Holder App acts as a Self-Issued OpenID Provider (Self-Issued OP), an OP controlled by the
Customer. Using SIOP, the Customer authenticates themselves with Self-Issued ID Tokens signed
with the private key under the Customer's control and presents Verifiable Credential(s) as a VP
(Verifiable Presentation) Token directly to the Verifiers.

Note: Refer to the OIDC Message Specification section for details.

Consent and Audit Function: Create Consent
The Holder App captures the customer consent for sharing Verifiable Credentials with the Verifiers
as part of SIOP request for presenting Verifiable Credential(s). The Holder App uses Create
Consent function to write a consent record in the Holder App datastore. The consent record is a
specialised audit event with the following details:

• Consent Purpose for sharing Verifiable Credentials with the Verifier

• Consented Credential Claims (i.e. full name, date of birth, place of birth, gender, verified
photo, Address etc)

• Consented relying party id (Verifier id)

• Consented Date Time

• Consent Expiry Date Time

Verifiable Credentials in Action Technical White Paper

 Page 18 of 52

Consent and Audit Function: Expire Consent
The Holder App uses this function to expire enduring consents if the customer wants to withdraw
them. The Expire Consent Function updates the expiry date of the enduring consent.

Consent and Audit Function: Get Consents

The Holder App uses this function to display existing consents associated with the customer by
querying the Holder App store.

Consent and Audit Function: Create Activity Audit
The Holder App uses this function to create an audit record of every step involved in the VC
issuance and VC sharing transactions to support non-repudiation requirements. The audit event
consists of the following details:

• Audit Event Creation Date

• Audit Text

• Audit Type (user, system etc)

• Relying Party ID (Holder App ID)

• Issuer ID

The audit event will be stored in the Holder App datastore.

Credential Management Function: Save Credentials
On receiving Verifiable(s) from the issuer, the Holder App uses this function to save Verifiable
Credential(s) to the Holder App datastore.

Credential Management Function: Get Credentials
On successful customer authentication, the Hoder App retrieves the Verifiable Credential(s) from
the Holder App Datastore and reads the claims from the Verifiable Credential(s) and displays the
claims to the customer.
Credential Management Function: Remove Credential
The Holder App uses this function to remove Verifiable Credential(s) from the Holder App
datastore when:

• the customer performs an action to remove Verifiable Credential,

• any changes to the Holder App DID,

• any changes to the device such as jailbroken or rooted etc.

Verifiable Credentials in Action Technical White Paper

 Page 19 of 52

Holder App Data Model

Holder App Data Model contains the following data entities:

Activity Audit Event

• Audit Event Creation Date
• Audit Text
• Audit Type
• Relying party ID
• Issuer ID

Consent Event

• Consented Date
• Consent Purpose
• Consented Credential Claims
• Relying Party ID
• Consent Expiry Date

Verifiable Credential

• Credential Issuer ID
• Credential
• Credential Claims
• Credential Expiry Date
• Oher Credential Metadata

User

• Face Template (Biometric Auth)
• Pass Key (Local Auth)
• Holder App DID
• Creation Date

n n n

1

Figure 5: Holder App Data Model

Verifiable Credentials in Action Technical White Paper

 Page 20 of 52

Verifiable Data Registry Functional Capabilities
The Verifiable Data Registry is a trust capability that will be deployed as did:web endpoint under
the Issuer’s VC Issuance Platform. The Verifiable Data Registry has the following functions:

Register DID Function API
The Issuer registers their Decentralised Identifier (DID) using the following information:

• Domain Name which resolves to did:web endpoint

• DID Document which is in JSON-LD format with the following details:

o id – Decentralised Identifier of Issuer (e.g: did:web:realme.govt.nz)

o Verification Method - contains the public key of the Issuer

 id – identifier of key, e.g. “did:web:realme.govt.nz#key1”.

 type – the value must be set to “JsonWebKey2020”.

 controller – must be same as id, e.g. “did:web:identityservices.dia.govt.nz”.

 publicKeyJWK

• kty – should be set to Elliptic Curve Algorithm, i.e “EC”.

• crv – should be set to "P-256” - denotes that this is a P256 curve.

• x- value of the public key.

• y- value of the public key.
o AssertionMethod – public key identifier e.g. “did:web: identityservices.dia.govt.nz

#key1”.

o Authentication – public key identifier e.g. “did:web: identityservices.dia.govt.nz
#key1”.

DID Document

• Domain Name
• DID ID
• JSON Document
• Creation Date
• Version

Figure 6: DID Document Entity

Resolve DID Function API
The Issuer DID resolve the domain and forms a well-known URI to access the Issuer’s DID
Document. For a DID “did:web:issuer.govt.nz”, the Verifier will attempt to access the Issuer’s DID
document at https://issuer.govt.nz/.well-known/did.json. The well-known endpoint is publicly
accessible.

Note: refer to the DID Document specification section for the DID Document details.

https://issuer.govt.nz/.well-known/did.json

Verifiable Credentials in Action Technical White Paper

 Page 21 of 52

Verifier Functional Capabilities
Verifiers are service providers who need to confirm identity information from their customers.
Verifiers can collect and verify customer information in a more convenient, cost-effective, private,
and trustworthy way for them and their customers using Verifiable Credentials. Verifiers don’t
need to retain a hard copy of identity documents or personal information. The customer can
present their Verifiable Credential(s) to access services (digital or in-person) that the Verifiers
offer. The Verifiable Credential(s) will reduce any risk of any privacy breaches or hacks designed to
access and publicise personal information, creating identity theft opportunities.

Digital Service
The Verifier’s Digital Service is a web service which offers a service specific to the Verifier’s domain
context. Customers access the service over the Internet and must prove themselves digitally. One
of the options could be sharing their Verifiable Credential(s) to prove themselves digitally.

The Verifier’s Digital Service uses the Generate QR Code function to display the QR Code. The
customer uses their Holder App to scan the QR Code. The Digital Service provides access to the
customer after receiving the Verifiable Credential(s) claims from the SIOP Response API.

Generate QR Code Function
Verifiers create a QR code with Self Issued Open ID Provider authorisation request. The
authorisation request will always be bound to the user’s session. The Holder App scans the QR
code to retrieve authorisation parameters.

Note: refer to the OIDC message specification section for VC sharing.

SIOP Response API

On successful validation of OIDC authentication request and user consent, the Holder App creates
an ID Token and VP Token with verifiable credentials as claims and shares them to the Verifier’s
SIOP response API. On receiving the response from the Holder App, the SIOP response API:

• validates the ID Token signature, which is signed by the Holder App,

• validates the VP Token signature, which is signed by the Holder App,

• retrieves the Verifiable Credential(s) from the VP Token,

• gets the Issuer’s DID from the VP Token,

• uses Get Issuer DID Document function to get the Issuer’s assertion public key,

• validates the Verifiable Credential(s) signature using the Issuer’s assertion public key,

• optionally uses the Validate Credential Status Function to confirm the validity of the
Verifiable Credential(s).

• reads the claims from the Verifiable Credential(s) on successful validation of the Verifiable
Credential(s),

• updates the customer’s session with Verifiable Credential(s) claims,

• returns HTTP status code 200 to the Holder App,

Verifiable Credentials in Action Technical White Paper

 Page 22 of 52

Get Issuer DID Document Function

The following are key points regarding this function:

• uses Issuer’s DID, i.e. “did:web:issuer.govt.nz” and attempts to access the Issuer’s DID
document at https://issuer.govt.nz/.well-known/did.json

• reads assertion public key from the Issuer’s DID document and

• shares assertion public key to the SIOP Response API.

Validate Credential Status Function

The following are key points regarding this function:

• queries the Issuer’s VC Status API to confirm the status of the Verifiable Credential(s).

• if the status is “active” then confirms the validity of the Verifiable Credential(s) to the SIOP
Response API.

• If status is not “active” then returns error response.

Proposed Issuer Message Flow – Verifiable Identity Credentials
Issuance by DIA
The following diagram depicts the Verifiable Credentials with Identity claims issued by the
Department of Internal Affairs (DIA).

Note: This flow can differ for other Issuers who issue verified credentials to the customer.

https://issuer.govt.nz/.well-known/did.json

Page 23 of 52

User

Holder App:
Mobile Application

Downloads
and installs the app

Clicks setup button

Retrieves user liveness frame(s)
from video stream

Opens Camera for
User livenss

Captures user frames through video stream

Holder App:
Liveness API

Confirm Liveness Frame(s)

Provides response based on validation

Generate private and public key pair if liveness successful

Holder App:
Enrol User API

Create did:jwk based on public key

Enrol user (did:jwk, face)
Enrol user with face and did:jwk for

server biometric auth

Confirms successful enrolment

Opens Embedded browser

Issuer:
VC Issuance Service

(OIDC Authorisation Server)

Redirect user with OIDC Authorisation Request

Displays Get Verifiable Identity Credential button

Clicks Get Verifiable Identity Credential button

DIA RealMe/ Identity Check
(Identity Proofing)

Redirect with
OIDC Request

Identity Proofing - Passports Identity Confirmation Journey or RealMe Verified Identity Journey
Redirect with
OIDC Successful
Response

Displays consent page for getting Verifiable Credential with Identity Claims

Gives consent for obtaining for Verifiable Credentials

Issuer:
Create Consent API

Create Consent (did:jwk, consent given, consented date)

Successful Response

Creates Access Token

Redirects with authorisation code
Get Access Token for Authorisation Code

Returns Access Token

Access Token, Proof = Self-signed JWT, Credential Definition

Issuer:
Validate Holder App

Signature API

Validate Signature Proof
Signature verification successful

Issuer:
Create Credential API

Create Verifiable Credential (sub: did:jwk , identity claim)

Validates Access Token

saves credential metadata
(did:jwk, creation date, claim name, OTI ID)

Verifiable Credential with Claim

Repeat process for every identity cliam (e.g. full name, date of birth, over18, gender, place of birth, photo))

Issuer:
Create Audit Record API

Create Audit records for each credential creation

Successful Response

Returns Verifiable Credentials

Holder App:
 Face Authentication API

Face match (did:jwk, credential photo)

Retrieve photo from verifiable photo credential

FR Matching Response

Save Credentials if FR match is successful

 if FR match is unsuccessful, update user with VC photo

Displays verifiable credential claims

Creates VC (subject as did:jwk, creation date, identity claim)

Sign credential using private key and its public key can be found through did:web

Create an Identity Record Identity Register

Page 24 of 52

The following are the key points regarding the proposed VC Issuance message flow:

• The customer (i.e., the user) downloads the Holder App and sets up their authenticator
using its authentication options. One of the Authentication options could be the Face as an
Authenticator. For Face Authenticator binding, the Holder App confirms the liveness of the
customer. It generates a private-public key pair before enrolling the customer with a face
template and did:jwk or did:key to the Holder App. The user enrolment details can be
saved on the device or the Holder App cloud infrastructure.

• On successful enrolment, the customer clicks the Get Identity Credentials button, which
redirects the customer to the DIA VC Issuance Service Authorisation Endpoint with OIDC
Authorisation Request through the embedded browser. The DIA VC Issuance Service
validates the Authorisation Request and redirects the customer to the Identity Check
service or RealMe Verified Identity service with the OIDC Authorisation Request for the
customer’s Identity verification or confirmation.

• If the customer chooses the Identity Check service as an Identity Proofing service, the
Identity Check service validates the customer's entered NZ passport or NZ citizenship
identity details, validates the customer's liveness, matches the live image against the
passport photo, and returns Identity Claims as part of an ID Token. If the customer is
RealMe customer and chooses the RealMe as an Identity Proofing service, then RealMe
returns Identity Claims as part of ID Token.

• The VC Issuance Service saves Verified Identity details in DIA's Verified Identity store (IVS).
The VC Issuance service displays the consent page for customer’s consent for issuing
Verifiable Credential(s). The VC Issuance service creates a consent record and persists
Identity claims in a temporary cache before redirecting the customer with the OIDC
Authorisation Code to the Holder App.

• The Holder App invokes the VC Issuance service OIDC Token endpoint with an OIDC
Authorisation Code, and the VC Issuance service returns an access token to the Holder App.

• The Holder App creates a Signed JWT using their private key. It invokes the VC Issuance
service OIDC Credential Endpoint with Signed JWT as signature proof, Access Token, and
required credentials (full name, date of birth, place of birth, over18, gender, photo) as a
Credential definition.

• The VC Issuance service validates the signature proof and Access token and creates a
separate Verifiable Credential for each requested claim to support selective disclosure
transactions. The VC Issuance service saves Verifiable Credentials Metadata information in
the Credential Metadatastore and returns Verifiable Credential(s) to the Holder App in
response.

• The Holder App retrieves a photo from Photo Verifiable Credential and does one-to-one
matching against the enrolled user’s face print to confirm the same user. If the match
succeeds, the Holder App saves Verifiable Credential(s) in the Holder App datastore. The
Holder App datastore can be on the device or the Holder App cloud infrastructure.

• The Holder App displays the Verifiable Credentials claims to the customer.

Verifiable Credentials in Action Technical White Paper

 Page 25 of 52

Proposed Message Flow – Verifiable Identity Credentials
Presentation by Holder App
The following diagram depicts the proposed Verifiable Credentials Presentation with the Verifier’s
Digital service by the Holder App.

Note: DIA is interested in feedback from the Verifiers and Market Participants.

Page 26 of 52

User

Holder App:
Mobile Application

Opens holder app

Clicks login button
Opens Camera for

User livenss

Captures user frames through video stream

Holder App:
Liveness API

Retrieves user liveness frame(s)
from video stream

Confirm Liveness Frame(s)

Provides response based on validation

Retrieve did:jwk

Holder App:
Face Authentication

Face match (did:jwk, live photo)

FR Matching Response

Displays verifiable credentials details

Verifier:
Digital Service

Opens relying party service from browser
in a different device

Scans QR Code

Displays QR code by rendering SIOP request parameters

Uses holder app to scan QR code

Retrieves OIDC request from QR code

Validates request parameters, reads required claims from presentation_definitions

Displays consent page with sharing claims

Gives consent to share with RP

Creates verifiable presentation

Submits credentials

validates verifiable presentation
signature by holder app

Reads issuer did:web from verifiable credential

Issuer:
DID:Web Resolver

Get issuer DID document

Returns DID Document

Reads public key from DID document

Validates signature of verifiable credentials

Issuer:
Assert Credential Status API

Get Verifiable Credential Status

Returns VC status (Active, Revoked)

Enrols the user with verifiable credentials claims

Displays next steps page in the business process

Holder App:
Get Credentials

Get Verifiable Credentials

Page 27 of 52

Figure 7: VC Presentation Message Flow

The following are the key points regarding the VC Presentation message flow:

• The customer opens the Holder App and clicks the “login” button. The Holder App confirms
the liveness of the customer and does one-to-one matching against the enrolled user’s face
print against the live image to ensure the same user. On successful face authentication, the
Holder App retrieves the Verifiable Credentials from the Holder App datastore and displays
the Verifiable Credentials to the customer.

• The customer wants to enrol with a Verifier’s Digital service and must digitally prove their
identity and share other claims. The Verifier’s Digital service creates a Self-Issued OP
request and renders it as a QR code as per Self Issued OpenID Provider (SIOP) protocol.
The customer scans the QR code with the Holder App.

• The Holder App validates SIOP request and identifies the required claims from the SIOP
request. The customer gives a consent to share claims from the Verifiable Credentials with
the Verifier’s Digital service. The Holder App creates a consent record in the Holder App
datastore.

• The Holder App creates a Verifiable Presentation token, defined in OpenID Connect for
Verifiable Presentation protocol. The Verifiable Presentation token contains Verifiable
Credentials and signs the Verifiable Presentation using its private key. The Holder App
sends to the Verifier web service with Verifiable Presentation token.

• The Verifier Digital service invokes Issuer’s DID:web resolver API to obtain DIA’s DID
document. The Verifiable Data Registry is a public cloud platform to save issuer DIDs (DID:
web). The Verifier Digital service gets the issuer's public key from the issuer's DID
document and verifies the signature of the Verifiable Credential using the issuer's public
key.

• On successful signature verification, the Verifier’s Digital service invokes DIA’s Credential
Status API to check the status of the Verifiable Credential. The Credential status API
provides the credential status as “Active” or “Revoked” and a unique pairwise identifier
(also known as RealMe FIT) which is the customer’s identifier related to the Verifier’s
Digital service. The Verifier’s Digital service takes the customer to the next step in the
enrolment process if the credential status is “Active”. The user takes the customer to the
alternative identity verification options if the credential status is “revoked”.

https://openid.net/specs/openid-connect-self-issued-v2-1_0.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0.html
https://w3c-ccg.github.io/did-method-web/
https://w3c-ccg.github.io/did-method-web/

Verifiable Credentials in Action Technical White Paper

 Page 28 of 52

VC Issuance – Proposed OIDC Message
Specification
Note: The proposed message specification may require an update based on feedback from the
verifiers and the Market Participants.

This section describes the intended message specification for the Department of Internal Affairs
(i.e. Issuer) to issue Verifiable Credentials with Identity Claims. The Department of Internal Affairs
exposes the VC Issuance Service for the Holder Apps to receive Verifiable Credentials with identity
claims. The following three endpoints are involved in issuing Verifiable Credentials:

• OIDC Authorisation Endpoint
• OIDC Token Endpoint
• OIDC Credential Endpoint

OIDC Authorisation Endpoint
The Holder App redirects the user with an authentication request to the VC Issuance Service
Authorisation Endpoint. The following table describes an authentication request parameter:

Parameter Description

scope The scope must contain:

• openid

• identitynamecredential

• identitydobcredential

• identitypobcredential

• identitygendercredential

• identityphotocredential

• identityover18credential

authorization_details The request parameter authorization_details MUST be passed
to convey the details about the Credentials the Holder App
wants to obtain if the request doesn’t contain a scope
parameter. Refer to the Table 3 for the details.

response_type Response Type value that determines the authorization
processing flow to be used, including what parameters are
returned from the endpoints used. When using the
authorisation code flow, this value is code.

client_id The identifier of the Holder App provider.

Verifiable Credentials in Action Technical White Paper

 Page 29 of 52

code_challenge It is recommended to pass this parameter when using Single
Page Apps (SPA) or Mobile Apps.

The Holder App creates a unique string value, code_verifier,
which it hashes and encodes as a code_challenge.

In place of the client_secret, while interacting with the VC
Issuance service token endpoint, the Holder App uses
code_verifier to authenticate itself with the token endpoint.

code_challenge_method This parameter must be passed, and the value should be
SHA256.

redirect_uri Redirection URI to where the response will be sent, and the
redirection URI MUST use the custom scheme as defined in
native app redirect URI scheme. The URI must be
myapp://callback.

state Opaque value used to maintain state between the request and
the callback. This will be passed back in the response and
should be checked to confirm the value matches what was
passed in the request.

Typically, Cross-Site Request Forgery (CSRF, XSRF) mitigation is
done by cryptographically binding the value of this parameter
with a browser cookie.

Table 2: OIDC Authorisation Endpoint – Authentication Request

Request Parameter Description

type JSON string that determines the authorization details type. MUST be
set to openid_credential.

format JSON string representing the format in which the Credential is
requested to be issued. MUST be set to either jwt_vc_json or ldp_vc.

types It is an array of stings, must contain one of these values:

• [“VerifiableCredential”, “IdentityNameCredential”],

• [“VerifiableCredential”, “IdentityDoBCredential”]

• [“VerifiableCredential”, “IdentityPoBCredential”]

• [“VerifiableCredential”, “IdentityGenderCredential”]

• [“VerifiableCredential”, “IdentityPhotoCredential”]

• [“VerifiableCredential”, “IdentityOver18Credential”]

Table 3: authorisation_details

https://www.oauth.com/oauth2-servers/redirect-uris/redirect-uris-native-apps/

Verifiable Credentials in Action Technical White Paper

 Page 30 of 52

The following is an example of authentication request by the Holder App:

GET /authorize? scope=openid, IdentityNameCredential, IdentityDoBCredential, IdentityPoBCredential,
IdentityGenderCredential, IdentityPhotoCredential, IdentityOver18Credential

 &response_type=code

 &client_id=s6BhdRkqt3

 &code_challenge=E9Melhoa2OwvFrEMTJguCHaoeK1t8URWbuGJSstw-cM

 &code_challenge_method=S256

 &redirect_ui=myapp://callback

OIDC Authentication Successful Response

Below is an example of a successful Authorization Response by Issuer Authentication Endpoint:

HTTP/1.1 302 Found

 Location: myapp://callback?code=SplxlOBeZQQYbYS6WxSbIA

OIDC Authentication Unsuccessful Response
Below is an example of an unsuccessful Authorization Response.

HTTP/1.1 302 Found

Location: myapp://callback?

 error=invalid_request

 &error_description=Unsupported%20response_type%20value

The following table provides key error codes and descriptions:

Error Code Error Description

request_not_supported

Issuance Endpoint does not support the use of the request
parameter supplied in the authentication request.

interaction_required

Issuance Endpoint requires customer interaction to proceed
through authentication journey.

unsupported_response_type

Issuance Endpoint does not support obtaining an authorisation
code using this method.

invalid_request

The request is missing a required parameter, includes an invalid
parameter value, includes a parameter more than once, or is
otherwise malformed.

invalid_scope

The requested scope is invalid, unknown, or malformed.

Verifiable Credentials in Action Technical White Paper

 Page 31 of 52

server_error

Issuance Endpoint encountered an unexpected condition that
prevented it from fulfilling the request.

access_denied User exited from the issuance journey or Issuance service denied
the request.

consent_required

Issuance Endpoint requires customer’s consent to issue verifiable
credential.

Table 4: Error Codes and Descriptions

OIDC Token Endpoint

On receiving the authorisation code, the Holder App invokes the VC Issuance Service Token
Endpoint by sending the following request parameters using the "application/x-www-form-
urlencoded” format with a character encoding of UTF-8 in the HTTP request entity-body. The
Holder App sends the following request parameters to the Token Endpoint:

Request Parameter Mandatory/
Optional

Description

code Mandatory The Holder App redeems the authorisation code with
the Token Endpoint for the ID token.

grant_type Mandatory The value must be “authorization_code”.

redirect_uri Mandatory The "redirect_uri" parameter value MUST be the same
as the value that was included in the authorization
request.

code_verifier Mandatory The same code_verifier used to obtain the
authorization code. Required as PKCE was used in the
authorization code grant request.

Table 5: Token Endpoint – Request Parameters

The following is a non-normative example of a Token Request:

POST /token HTTP/1.1

Host: issuer.govt.nz

Content-Type: application/x-www-form-urlencoded

Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

 grant_type=authorization_code

 &code=SplxlOBeZQQYbYS6WxSbIA

 &code_verifier=dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

 &redirect_uri=myapp://callback

Verifiable Credentials in Action Technical White Paper

 Page 32 of 52

Token Endpoint Successful Response

After receiving and validating a valid and authorized Token Request from the Holder App, the
Issuer Token Endpoint returns a successful response that includes an access token.

Response Parameter Description

access_token Access token issued for Credential Endpoint

token_type The value must be Bearer

expires_in Token expiry time in milliseconds

Table 6: Token Endpoint Successful Response

Token Endpoint Unsuccessful Response

The following table provides key error codes and descriptions:

Error Code Error Description

request_not_supported

Token endpoint does not support the use of the request
parameter supplied in the authentication request.

invalid_request

The request is missing a required parameter, includes an
invalid parameter value, includes a parameter more than
once, or is otherwise malformed.

server_error

Token endpoint encountered an unexpected condition that
prevented it from fulfilling the request.

Table 7: Error Codes and Error Descriptions

OIDC Credential Endpoint
Credential Request

The VC Issuance Service Credential Endpoint issues Verifiable Credential(s) to the Holder App as
approved by the user upon presentation of a valid Access Token representing the approval. The
endpoint issues the following verifiable credentials, and each credential must be requested
separately:

• IdentityNameCredential
• IdentityDoBCredential
• IdentityPoBCredential
• IdentityGenderCredential
• IdentityPhotoCredential
• IdentityOver18Credential

Communication with the Credential Endpoint MUST utilize TLS.

The following table provides Credential Request parameters:

Verifiable Credentials in Action Technical White Paper

 Page 33 of 52

Parameter Mandatory/
Optional

Description

Format

Required JSON string representing the format in which the Credential is
requested to be issued. This Credential format identifier
determines further claims in the authorization details object
specifically used to identify the Credential type to be issued.
Must be set to jwt_vc_json or ldp_vc.

credential_
definition

Required It is required for ldp_vc format. Refer to the table 9 for more
details.

proof Required It must be Signed JWT. The following are the key parameters
need to be passed:

• “proof_type”: “jwt”,

• “jwt”: refer to the table 8 for more details.

Table 8: Credential Request Parameters

The following table provides credential definition parameters.

Parameter Mandatory/
Optional

Description

@context Required It must be

[

"https://www.w3.org/2018/credentials/v1",

"https://www.dia.govt.nz/2023/credentials/identitypoc/v1"]

types Required It is an array of stings and one of the values can be:

• [“VerifiableCredential”, “IdentityNameCredential”] or

• [“VerifiableCredential”, “IdentityDoBCredential”] or

• [“VerifiableCredential”, “IdentityPoBCredential”] or

• [“VerifiableCredential”, IdentityGenderCredential”] or

• [“VerifiableCredential”, “IdentityPhotoCredential”] or

• [“VerifiableCredential”, “IdentityOver18Credential”]

 Table 9: Credential Definition Parameters

Verifiable Credentials in Action Technical White Paper

 Page 34 of 52

The following table provides required elements in signed JWT as a proof for VC Issuance Service
Credential Endpoint.

JWT Claim Header/ Body Description
typ JOSE Header Must be openid4vci-proof+jwt
alg JOSE Header Must be ES256
jwk JOSE Header Must be containing the public key (i.e. did:jwk) material

the new credential shall be bound to, i.e. Holder App.
iss Body did:jwk: {publickey}
aud Body The value of this claim MUST be the Credential Issuer URL

of the Credential Issuer.
iat Body The value of this claim MUST be the time at which the

proof was issued.
nonce Body The value type of this claim MUST be a string, where the

value is a c_nonce provided by the Credential Issuer.

Table 10: Credential Request – Signed JWT

The following non-normative example of credential request:

POST /credential HTTP/1.1

Host: realme.govt.nz

Content-Type: application/json

Authorization: BEARER czZCaGRSa3F0MzpnWDFmQmF0M2JW

{

 "format":"ldp_vc ",

 "types":[“VerifiableCredential”, “IdentityNameCredential”],

 "proof":{

 "proof_type":"jwt",

 "jwt":"eyJraWQiOiJkaWQ6ZXhhbXBsZTplYmZlYjFmNzEyZWJjNmYxYzI3NmUxMmVjMjEva2V5cy8

 xIiwiYWxnIjoiRVMyNTYiLCJ0eXAiOiJKV1QifQ.eyJpc3MiOiJzNkJoZFJrcXQzIiwiYXVkIjoiaHR

 0cHM6Ly9zZXJ2ZXIuZXhhbXBsZS5jb20iLCJpYXQiOiIyMDE4LTA5LTE0VDIxOjE5OjEwWiIsIm5vbm

 NlIjoidFppZ25zbkZicCJ9.ewdkIkPV50iOeBUqMXCC_aZKPxgihac0aW9EkL1nOzM"

 }

}

Successful Credential Response

After receiving and validating a valid Credential Request from the Holder App, the Issuer
Credential Endpoint returns a successful response that includes a Credential. The following table
provides successful response parameters:

Verifiable Credentials in Action Technical White Paper

 Page 35 of 52

Parameter Mandatory/
Optional

Description

format Required JSON string representing the format in which the Credential
is requested to be issued. Must be set to jwt_vc_json or
ldp_vc.

credential Required Contains issued Credential. MUST be present. It is one of
the Identity Credentials.

Table 11: Successful Credential Response

The following non-normative example of successful credential response:

HTTP/1.1 200 OK

Content-Type: application/json

Cache-Control: no-store

{

 "format": "ldp_vc",

 "credential": {

 Refer to Credential Section for Strucure.

 }

}

Unsuccessful Credential Response

The following table provides key error codes and descriptions:

Error Code Error Description

invalid_request Credential Request was malformed. One or more of the
parameters (i.e. format, proof) are missing or malformed.

invalid_token Credential Request contains the wrong Access Token, or
the Access Token is missing.

unsupported_credential_type requested credential type is not supported.

unsupported_credential_format requested credential format is not supported.

invalid_or_missing_proof Credential Request did not contain a proof, or proof was
invalid.

Table 12: Error Codes and Descriptions

The following non-normative example of error response:

Verifiable Credentials in Action Technical White Paper

 Page 36 of 52

HTTP/1.1 400 Bad Request

Content-Type: application/json

Cache-Control: no-store

{

 "error": "invalid_request"

}

Example Verifiable Credentials with Identity Credentials
Identity Name Credential Example

{

 '@context': [

 'https://www.w3.org/2018/credentials/v1',

 'https://w3id.org/security/suites/jws-2020/v1', {

 'Date_of_Birth': 'ex:Date_of_Birth',

 'Gender': 'ex:Gender',

 'IdentityGenderCredential': 'ex:IdentityGenderCredential',

 'IdentityNameCredential': 'ex:IdentityNameCredential',

 'IdentityPhotoCredential': 'ex:IdentityPhotoCredential',

 'IdentityPoBCredential': 'ex:IdentityPoBCredential',

 'Over18': 'ex:Over18',

 'Photo': 'ex:Photo',

 'Place_of_Birth': 'ex:Place_of_Birth',

 'ex': 'https://realme.govt.nz/.wellknownendpoint/schema#ex',

 'format': 'ex:format',

 'givennames': 'ex:givennames',

 'identity': 'ex:identity',

 'surname': 'ex:surname'

 }], // end of credential context

 'credentialSubject': {

 "id":
"did:jwk:eyJjcnYiOiJQLTI1NiIsImt0eSI6IkVDIiwieCI6ImFjYklRaXVNczNpOF91c3pFakoydHBUdFJNN
EVVM3l6OTFQSDZDZEgyVjAiLCJ5IjoiX0tjeUxqOXZXTXB0bm1LdG00NkdxRHo4d2Y3NEk1TEtncmw
yR3pIM25TRSJ9",

 'identity': {

 'givennames': 'Joe',

Verifiable Credentials in Action Technical White Paper

 Page 37 of 52

 'surname': 'blogs'

 }

 },

 'id': 1c226e2c-0e43-43e7-b5d0-6f6c13acd0df',

 'issuanceDate': '2023-08-20T15:23:12',

 'issuer': 'did:web:realme.govt.nz',

 'proof': {

 'created': '2023-08-19T22:55:31',

 'jws':
'eyJiNjQiOiBmYWxzZSwgImNyaXQiOiBbImI2NCJdLCAiYWxnIjogIkVTMjU2In0..TbFwNTqMP6zm2k9_MzK_
DcdwivCq39LB7_UDXwh8DOZDJXhMWMPX5OnLYXLR_Xv8kqdui8uzS52gJu21Sb3hUg',

 'proofPurpose': 'assertionMethod',

 'type': 'JsonWebSignature2020',

 'verificationMethod': 'did:web:realme.govt.nz#key1'

 },

 'type': ['IdentityNameCredential', 'VerifiableCredential']

 }

Identity Date of Birth Credential Example

{

 '@context': [

 'https://www.w3.org/2018/credentials/v1',

 'https://w3id.org/security/suites/jws-2020/v1', {

 'Date_of_Birth': 'ex:Date_of_Birth',

 'Gender': 'ex:Gender',

 'IdentityGenderCredential': 'ex:IdentityGenderCredential',

 'IdentityNameCredential': 'ex:IdentityNameCredential',

 'IdentityPhotoCredential': 'ex:IdentityPhotoCredential',

 'IdentityPoBCredential': 'ex:IdentityPoBCredential',

 'Over18': 'ex:Over18',

 'Photo': 'ex:Photo',

 'Place_of_Birth': 'ex:Place_of_Birth',

 'ex': 'https://realme.govt.nz/.wellknownendpoint/schema#ex',

 'format': 'ex:format',

 'givennames': 'ex:givennames',

Verifiable Credentials in Action Technical White Paper

 Page 38 of 52

 'identity': 'ex:identity',

 'surname': 'ex:surname'

 }], // end of credential context

 'credentialSubject': {

 "id":
"did:jwk:eyJjcnYiOiJQLTI1NiIsImt0eSI6IkVDIiwieCI6ImFjYklRaXVNczNpOF91c3pFakoydHBUdFJNN
EVVM3l6OTFQSDZDZEgyVjAiLCJ5IjoiX0tjeUxqOXZXTXB0bm1LdG00NkdxRHo4d2Y3NEk1TEtncmw
yR3pIM25TRSJ9",

 'identity': {

 'Date_of_Birth': ‘1990-01-01’,

 'format': 'YYYY-MM-DD'

 }

 },

 'id': 1c226e2c-0e43-43e7-b5d0-6f6c13acd0df',

 'issuanceDate': '2023-08-20T15:23:12',

 'issuer': 'did:web:realme.govt.nz',

 'proof': {

 'created': '2023-08-19T22:55:31',

 'jws':
'eyJiNjQiOiBmYWxzZSwgImNyaXQiOiBbImI2NCJdLCAiYWxnIjogIkVTMjU2In0..TbFwNTqMP6zm2k9_MzK_
DcdwivCq39LB7_UDXwh8DOZDJXhMWMPX5OnLYXLR_Xv8kqdui8uzS52gJu21Sb3hUg',

 'proofPurpose': 'assertionMethod',

 'type': 'JsonWebSignature2020',

 'verificationMethod': 'did:web:realme.govt.nz#key1'

 },

 'type': [' IdentityDoBCredential', 'VerifiableCredential']

 }

Identity Place of Birth Credential Example

{

 '@context': [

 'https://www.w3.org/2018/credentials/v1',

 'https://w3id.org/security/suites/jws-2020/v1', {

 'Date_of_Birth': 'ex:Date_of_Birth',

 'Gender': 'ex:Gender',

 'IdentityGenderCredential': 'ex:IdentityGenderCredential',

Verifiable Credentials in Action Technical White Paper

 Page 39 of 52

 'IdentityNameCredential': 'ex:IdentityNameCredential',

 'IdentityPhotoCredential': 'ex:IdentityPhotoCredential',

 'IdentityPoBCredential': 'ex:IdentityPoBCredential',

 'Over18': 'ex:Over18',

 'Photo': 'ex:Photo',

 'Place_of_Birth': 'ex:Place_of_Birth',

 'ex': 'https://realme.govt.nz/.wellknownendpoint/schema#ex',

 'format': 'ex:format',

 'givennames': 'ex:givennames',

 'identity': 'ex:identity',

 'surname': 'ex:surname'

 }], // end of credential context

 'credentialSubject': {

 "id":
"did:jwk:eyJjcnYiOiJQLTI1NiIsImt0eSI6IkVDIiwieCI6ImFjYklRaXVNczNpOF91c3pFakoydHBUdFJNN
EVVM3l6OTFQSDZDZEgyVjAiLCJ5IjoiX0tjeUxqOXZXTXB0bm1LdG00NkdxRHo4d2Y3NEk1TEtncmw
yR3pIM25TRSJ9",

 'identity': {

 'Place_of_Birth': 'Wellington, New Zealand'

 }

 },

 'id': 1c226e2c-0e43-43e7-b5d0-6f6c13acd0df',

 'issuanceDate': '2023-08-20T15:23:12',

 'issuer': 'did:web:realme.govt.nz',

 'proof': {

 'created': '2023-08-19T22:55:31',

 'jws':
'eyJiNjQiOiBmYWxzZSwgImNyaXQiOiBbImI2NCJdLCAiYWxnIjogIkVTMjU2In0..TbFwNTqMP6zm2k9_MzK_
DcdwivCq39LB7_UDXwh8DOZDJXhMWMPX5OnLYXLR_Xv8kqdui8uzS52gJu21Sb3hUg',

 'proofPurpose': 'assertionMethod',

 'type': 'JsonWebSignature2020',

 'verificationMethod': 'did:web:realme.govt.nz#key1'

 },

 'type': [' IdentityPoBCredential', 'VerifiableCredential']

 }

Verifiable Credentials in Action Technical White Paper

 Page 40 of 52

Identity Gender Credential Example

{

 '@context': [

 'https://www.w3.org/2018/credentials/v1',

 'https://w3id.org/security/suites/jws-2020/v1', {

 'Date_of_Birth': 'ex:Date_of_Birth',

 'Gender': 'ex:Gender',

 'IdentityGenderCredential': 'ex:IdentityGenderCredential',

 'IdentityNameCredential': 'ex:IdentityNameCredential',

 'IdentityPhotoCredential': 'ex:IdentityPhotoCredential',

 'IdentityPoBCredential': 'ex:IdentityPoBCredential',

 'Over18': 'ex:Over18',

 'Photo': 'ex:Photo',

 'Place_of_Birth': 'ex:Place_of_Birth',

 'ex': 'https://realme.govt.nz/.wellknownendpoint/schema#ex',

 'format': 'ex:format',

 'givennames': 'ex:givennames',

 'identity': 'ex:identity',

 'surname': 'ex:surname'

 }], // end of credential context

 'credentialSubject': {

 "id":
"did:jwk:eyJjcnYiOiJQLTI1NiIsImt0eSI6IkVDIiwieCI6ImFjYklRaXVNczNpOF91c3pFakoydHBUdFJNN
EVVM3l6OTFQSDZDZEgyVjAiLCJ5IjoiX0tjeUxqOXZXTXB0bm1LdG00NkdxRHo4d2Y3NEk1TEtncmw
yR3pIM25TRSJ9",

 'identity': {

 'Gender': 'Male'

 }

 },

 'id': 1c226e2c-0e43-43e7-b5d0-6f6c13acd0df',

 'issuanceDate': '2023-08-20T15:23:12',

 'issuer': 'did:web:realme.govt.nz',

 'proof': {

 'created': '2023-08-19T22:55:31',

Verifiable Credentials in Action Technical White Paper

 Page 41 of 52

 'jws':
'eyJiNjQiOiBmYWxzZSwgImNyaXQiOiBbImI2NCJdLCAiYWxnIjogIkVTMjU2In0..TbFwNTqMP6zm2k9_MzK_
DcdwivCq39LB7_UDXwh8DOZDJXhMWMPX5OnLYXLR_Xv8kqdui8uzS52gJu21Sb3hUg',

 'proofPurpose': 'assertionMethod',

 'type': 'JsonWebSignature2020',

 'verificationMethod': 'did:web:realme.govt.nz#key1'

 },

 'type': [' IdentityGenderCredential', 'VerifiableCredential']

 }

Identity Over18 Credential Example

{

 '@context': [

 'https://www.w3.org/2018/credentials/v1',

 'https://w3id.org/security/suites/jws-2020/v1', {

 'Date_of_Birth': 'ex:Date_of_Birth',

 'Gender': 'ex:Gender',

 'IdentityGenderCredential': 'ex:IdentityGenderCredential',

 'IdentityNameCredential': 'ex:IdentityNameCredential',

 'IdentityPhotoCredential': 'ex:IdentityPhotoCredential',

 'IdentityPoBCredential': 'ex:IdentityPoBCredential',

 'Over18': 'ex:Over18',

 'Photo': 'ex:Photo',

 'Place_of_Birth': 'ex:Place_of_Birth',

 'ex': 'https://realme.govt.nz/.wellknownendpoint/schema#ex',

 'format': 'ex:format',

 'givennames': 'ex:givennames',

 'identity': 'ex:identity',

 'surname': 'ex:surname'

 }], // end of credential context

 'credentialSubject': {

 "id":
"did:jwk:eyJjcnYiOiJQLTI1NiIsImt0eSI6IkVDIiwieCI6ImFjYklRaXVNczNpOF91c3pFakoydHBUdFJNN
EVVM3l6OTFQSDZDZEgyVjAiLCJ5IjoiX0tjeUxqOXZXTXB0bm1LdG00NkdxRHo4d2Y3NEk1TEtncmw
yR3pIM25TRSJ9",

Verifiable Credentials in Action Technical White Paper

 Page 42 of 52

 'identity': {

 'Over18': 'true'

 }

 },

 'id': 1c226e2c-0e43-43e7-b5d0-6f6c13acd0df',

 'issuanceDate': '2023-08-20T15:23:12',

 'issuer': 'did:web:realme.govt.nz',

 'proof': {

 'created': '2023-08-19T22:55:31',

 'jws':
'eyJiNjQiOiBmYWxzZSwgImNyaXQiOiBbImI2NCJdLCAiYWxnIjogIkVTMjU2In0..TbFwNTqMP6zm2k9_MzK_
DcdwivCq39LB7_UDXwh8DOZDJXhMWMPX5OnLYXLR_Xv8kqdui8uzS52gJu21Sb3hUg',

 'proofPurpose': 'assertionMethod',

 'type': 'JsonWebSignature2020',

 'verificationMethod': 'did:web:realme.govt.nz#key1'

 },

 'type': [' IdentityOver18Credential', 'VerifiableCredential']

 }

Identity Photo Credential Example

{

 '@context': [

 'https://www.w3.org/2018/credentials/v1',

 'https://w3id.org/security/suites/jws-2020/v1', {

 'Date_of_Birth': 'ex:Date_of_Birth',

 'Gender': 'ex:Gender',

 'IdentityGenderCredential': 'ex:IdentityGenderCredential',

 'IdentityNameCredential': 'ex:IdentityNameCredential',

 'IdentityPhotoCredential': 'ex:IdentityPhotoCredential',

 'IdentityPoBCredential': 'ex:IdentityPoBCredential',

 'Over18': 'ex:Over18',

 'Photo': 'ex:Photo',

 'Place_of_Birth': 'ex:Place_of_Birth',

 'ex': 'https://realme.govt.nz/.wellknownendpoint/schema#ex',

 'format': 'ex:format',

Verifiable Credentials in Action Technical White Paper

 Page 43 of 52

 'givennames': 'ex:givennames',

 'identity': 'ex:identity',

 'surname': 'ex:surname'

 }], // end of credential context

 'credentialSubject': {

 "id":
"did:jwk:eyJjcnYiOiJQLTI1NiIsImt0eSI6IkVDIiwieCI6ImFjYklRaXVNczNpOF91c3pFakoydHBUdFJNN
EVVM3l6OTFQSDZDZEgyVjAiLCJ5IjoiX0tjeUxqOXZXTXB0bm1LdG00NkdxRHo4d2Y3NEk1TEtncmw
yR3pIM25TRSJ9",

 'identity': {

 'photo': 'base64 encoded bytes',

 'format': 'JPG'

 }

 },

 'id': 1c226e2c-0e43-43e7-b5d0-6f6c13acd0df',

 'issuanceDate': '2023-08-20T15:23:12',

 'issuer': 'did:web:realme.govt.nz',

 'proof': {

 'created': '2023-08-19T22:55:31',

 'jws':
'eyJiNjQiOiBmYWxzZSwgImNyaXQiOiBbImI2NCJdLCAiYWxnIjogIkVTMjU2In0..TbFwNTqMP6zm2k9_MzK_
DcdwivCq39LB7_UDXwh8DOZDJXhMWMPX5OnLYXLR_Xv8kqdui8uzS52gJu21Sb3hUg',

 'proofPurpose': 'assertionMethod',

 'type': 'JsonWebSignature2020',

 'verificationMethod': 'did:web:realme.govt.nz#key1'

 },

 'type': [' IdentityOver18Credential', 'VerifiableCredential']

 }

Verifiable Credentials in Action Technical White Paper

 Page 44 of 52

VC Presentation Cross Device – Proposed
OIDC Message Specification
Note: The proposed message specification may require an update based on feedback from the
verifiers and the Market Participants.

SIOP Authorisation Request

Verifier digital service creates a QR code with SIOP Authorisation request. The customer scans QR
code to retrieve authorisation parameters. The OIDC Authorisation Request contains the following
parameters:

Parameter Description

scope The scope must contain:

• openid

 The scope should contain one of these:

• IdentityNameCredential

• IdentityDoBCredential

• IdentityPoBCredential

• IdentityGenderCredential

• IdentityPhotoCredential

• IdentityOver18Credential

response_type Response Type value that determines the authorization processing
flow to be used, including what parameters are returned from the
endpoints used. When using the authorisation code flow, this value is
id_token.

redirect_uri Redirection URI to where the response will be sent, and the
redirection URI MUST use the https scheme.

nonce String value used to associate a verifier session with an ID Token, and
to mitigate replay attacks. The value is passed through unmodified
from the Authentication Request to the ID Token.

id_token_type The types of ID Token the verifier want to obtain and the value must
be subject_signed.

response_mode Must be “post”.

client_metadata Must be {"subject_syntax_types_supported":["did:jwk22"],
"id_token_signed_response_alg":"ES256"}

Verifiable Credentials in Action Technical White Paper

 Page 45 of 52

Table 13: SIOP Request

GET siopv2://authorize?

 response_type=id_token

 &scope=openid, IdentityNameCredential,IdentityDoBCredential

 &id_token_type=subject_signed

 &client_id=https%3A%2F%2Fverifier.govt.nz%2Fcb

 &response_mode=post

 &redirect_uri=https%3A%2F%2Fverifier.govt.nz%2Fcb

 &nonce=n-0S6_WzA2Mj HTTP/1.1

 &client_metadata= %7B%22subject_syntax_types_supported%22%3A

 %5Bdid:jwk22%5D%2C%0A%20%20%20%20

 %22id_token_signed_response_alg%22%3A%22ES256%22%7D

SIOP Response

On successful validation of OIDC authentication request and user consent, the Holder App creates
an ID Token and VP Token with verifiable credentials as claims. The following table describes the
response parameters:

Parameter Description

id_token Holder App access as Self Issued Open ID Connect
Provider and issues id_token to the verifier. Refer to the
table 15 for its structure.

vp_token JSON String or JSON object that MUST contain a single
Verifiable Presentation or an array of JSON Strings and
JSON objects each of them containing a Verifiable
Presentations. Each Verifiable Presentation MUST be
represented as a JSON string (that is a Base64url encoded
value) or the format must be ldp_vp.

Refer to the VP Token section for details.

presentation_submission This is expressed via elements in
the descriptor_map array, known as Input Descriptor
Mapping Objects.

Verifiable Credentials in Action Technical White Paper

 Page 46 of 52

These objects contain a field called path, which, for this
specification, MUST have the value $ (top level root path)
when only one Verifiable Presentation is contained in the
VP Token, and MUST have the value $[n] (indexed path
from root) when there are multiple Verifiable
Presentations, where n is the index to select.

The path_nested object inside an Input Descriptor
Mapping Object is used to describe how to find a returned
Credential within a Verifiable Presentation, and the value
of the path field in it will ultimately depend on the
credential format.

Table 14: SIOPV2 Response – Verifiable Token Response
The following is non-normative example of response.

HTTP/1.1 302 Found

 Location: https://verifier.govt.nz/cb#

 id_token=

 &presentation_submission=...

 &vp_token=...

The following table describes SIOPv2 id_token response:

ID Tpken Claim Header/ Body Description
typ JOSE Header Must be JWT
alg JOSE Header Must be ES256
jwk JOSE Header Must be containing the public key (i.e. did:jwk) material

the new credential shall be bound to, i.e. Holder App.
iss Body Holder App’s did and it must be did:jwk: {publickey}.
sub Body Holder App’s did and it must be did:jwk: {publickey}.
aud Body The value of this claim MUST be the verifier’s client id.
iat Body The value of this claim MUST be the time at which the

proof was issued.
nonce Body The value type of this claim MUST be a string, it is same

values as authentication request.

Table 15: SIOPV2 ID Token Response

Verifiable Credentials in Action Technical White Paper

 Page 47 of 52

The following is non-normative example:

{// header

 "jwk": {

 "kty": "EC",

 "crv": "P-256",

 "x": "u2AjxKaEh0dtsFPJQr5oiCceGtEW5UbIw0AmRwhMVRU",

 "y": "WfUkDxPprn-ZuW1WOsJyfp7-YgHkPCymdUJp2UrpJuw"

 },

 "alg": "ES256",

 "typ": "jwt"

}.

{// body

 "iss":
"did:jwk:eyJrdHkiOiJFQyIsImNydiI6IlAtMjU2IiwieCI6InUyQWp4S2FFaDBkdHNGUEpRcjVvaUNjZUd0RVc1V
WJJdzBBbVJ3aE1WUlUiLCJ5IjoiV2ZVa0R4UHBybi1adVcxV09zSnlmcDctWWdIa1BDeW1kVUpwMlVycEp1d
yJ9",

 "sub":
"did:jwk:eyJrdHkiOiJFQyIsImNydiI6IlAtMjU2IiwieCI6InUyQWp4S2FFaDBkdHNGUEpRcjVvaUNjZUd0RVc1V
WJJdzBBbVJ3aE1WUlUiLCJ5IjoiV2ZVa0R4UHBybi1adVcxV09zSnlmcDctWWdIa1BDeW1kVUpwMlVycEp1d
yJ9",

 "aud": "https://verifier.govt.nz/cb",

 "nonce": "117fbc5e-a869-48a6-9f52-c4c9296db47f"

}.

{// signature

 "kty": "EC",

 "crv": "P-256",

 "x": "u2AjxKaEh0dtsFPJQr5oiCceGtEW5UbIw0AmRwhMVRU",

 "y": "WfUkDxPprn-ZuW1WOsJyfp7-YgHkPCymdUJp2UrpJuw"

}

Verifiable Credentials in Action Technical White Paper

 Page 48 of 52

The following is the presentation_submission normative example:

 'presentation_submission': {

 'definition_id': 'Identity Name and Identity DoB ldp_vc',

 'id': 'identityname_dob_ldp_vc_presentation_submission',

 'descriptor_map': [{

 'id': 'id_name_credential',

 'path': '$',

 'format': 'ldp_vp',

 'path_nested': {

 'format': 'ldp_vc',

 'path': '$.verifiableCredential[0]'

 }

 }, {

 'id': 'id_dob_credential',

 'path': '$',

 'format': 'ldp_vp',

 'path_nested': {

 'format': 'ldp_vc',

 'path': '$.verifiableCredential[1]'

 }

 }]

 }

The following is normative example of VP_token:

'vp_token': {

 '@context': ['https://www.w3.org/2018/credentials/v1',
'https://w3id.org/security/suites/jws-2020/v1'],

 'type': ['VerifiablePresentation'],

 'verifiableCredential': [{

 '@context': ['https://www.w3.org/2018/credentials/v1',
'https://w3id.org/security/suites/jws-2020/v1', {

 'Date_of_Birth': 'ex:Date_of_Birth',

 'Gender': 'ex:Gender',

 'IdentityGenderCredential': 'ex:IdentityGenderCredential',

Verifiable Credentials in Action Technical White Paper

 Page 49 of 52

 'IdentityNameCredential': 'ex:IdentityNameCredential',

 'IdentityPhotoCredential': 'ex:IdentityPhotoCredential',

 'IdentityPoBCredential': 'ex:IdentityPoBCredential',

 'Over18': 'ex:Over18',

 'Photo': 'ex:Photo',

 'Place_of_Birth': 'ex:Place_of_Birth',

 'ex': 'https://oti-mattr-
bridge.australiasoutheast.cloudapp.azure.com/api/vocab#ex',

 'format': 'ex:format',

 'givennames': 'ex:givennames',

 'identity': 'ex:identity',

 'surname': 'ex:surname'

 }],

 'credentialSubject': {

 'id': '
did:jwk:eyJrdHkiOiJFQyIsImNydiI6IlAtMjU2IiwieCI6InUyQWp4S2FFaDBkdHNGUEpRcjVvaUNjZUd0RVc1V
WJJdzBBbVJ3aE1WUlUiLCJ5IjoiV2ZVa0R4UHBybi1adVcxV09zSnlmcDctWWdIa1BDeW1kVUpwMlVycEp1d
yJ9',

 'identity': {

 'givennames': 'Joe',

 'surname': 'Blogs'

 }

 },

 'id': '1c226e2c-0e43-43e7-b5d0-6f6c13acd0df',

 'issuanceDate': '2023-08-20T15:23:12',

 'issuer': 'did:web:realme.govt.nz',

 'proof': {

 'created': '2023-08-19T22:55:31',

 'jws':
'eyJiNjQiOiBmYWxzZSwgImNyaXQiOiBbImI2NCJdLCAiYWxnIjogIkVTMjU2In0..TbFwNTqMP6zm2k9_MzK_
DcdwivCq39LB7_UDXwh8DOZDJXhMWMPX5OnLYXLR_Xv8kqdui8uzS52gJu21Sb3hUg',

 'proofPurpose': 'assertionMethod',

 'type': 'JsonWebSignature2020',

 'verificationMethod': 'did:web:oti-mattr-
bridge.australiasoutheast.cloudapp.azure.com#key1'

 },

 'type': ['IdentityNameCredential', 'VerifiableCredential']

Verifiable Credentials in Action Technical White Paper

 Page 50 of 52

 }, {

 '@context': ['https://www.w3.org/2018/credentials/v1',
'https://w3id.org/security/suites/jws-2020/v1', {

 'Date_of_Birth': 'ex:Date_of_Birth',

 'Gender': 'ex:Gender',

 'IdentityGenderCredential': 'ex:IdentityGenderCredential',

 'IdentityNameCredential': 'ex:IdentityNameCredential',

 'IdentityPhotoCredential': 'ex:IdentityPhotoCredential',

 'IdentityPoBCredential': 'ex:IdentityPoBCredential',

 'Over18': 'ex:Over18',

 'Photo': 'ex:Photo',

 'Place_of_Birth': 'ex:Place_of_Birth',

 'ex': 'https://oti-mattr-bridge.australiasoutheast.cloudapp.azure.com#vocab',

 'format': 'ex:format',

 'givennames': 'ex:givennames',

 'identity': 'ex:identity',

 'surname': 'ex:surname'

 }],

 'credentialSubject': {

 'id': '
did:jwk:eyJrdHkiOiJFQyIsImNydiI6IlAtMjU2IiwieCI6InUyQWp4S2FFaDBkdHNGUEpRcjVvaUNjZUd0RVc1V
WJJdzBBbVJ3aE1WUlUiLCJ5IjoiV2ZVa0R4UHBybi1adVcxV09zSnlmcDctWWdIa1BDeW1kVUpwMlVycEp1d
yJ9',

 'identity': {

 'Date_of_Birth': '1990-01-01',

 'format': 'YYYY-MM-DD'

 }

 },

 'id': 1c226e2c-0e43-43e7-b5d0-6f6c13acd0df',

 'issuanceDate': '2023-08-20T15:23:15',

 'issuer': 'did:web:realme.govt.nz',

 'proof': {

 'created': '2023-08-19T22:55:31',

 'jws':
'eyJiNjQiOiBmYWxzZSwgImNyaXQiOiBbImI2NCJdLCAiYWxnIjogIkVTMjU2In0..-
r0TPhdqXKFMziq4mMegJBOuM3bicduetwjkSqRgrZOXwu314LQmD6tSRdmyuXlNfdk0gp3KZEhacTBSPXwY
8Q',

Verifiable Credentials in Action Technical White Paper

 Page 51 of 52

 'proofPurpose': 'assertionMethod',

 'type': 'JsonWebSignature2020',

 'verificationMethod': 'did:web:oti-mattr-
bridge.australiasoutheast.cloudapp.azure.com#key1'

 },

 'type': ['IdentityDoBCredential', 'VerifiableCredential']

 }],

 'id': '1234568900',

 'holder':
'did:jwk:eyJrdHkiOiJFQyIsImNydiI6IlAtMjU2IiwieCI6ImktUHotV3pxSUtZR1hfbHhvS05DWHhTVVJkemdHRk
RiSGZIeXpJUTZjRUUiLCJ5IjoiRUwyamJ6OUtrZTZkX29NejV4UEhWNWh1R0hpMzlLUHNySjlFa1JiZ3M0OCJ9'
,

 'proof': {

 'type': 'JsonWebSignature2020',

 'created': '2023-08-21T07:47:14.591130',

 'challenge': '531ade20-c978-43e0-8030-441ba8b9f41d',

 'domain': 'https://verifier.govt.nz/cb',

 'proofPurpose': 'authentication',

 'verificationMethod':
'did:jwk:eyJrdHkiOiJFQyIsImNydiI6IlAtMjU2IiwieCI6ImktUHotV3pxSUtZR1hfbHhvS05DWHhTVVJkemdHRk
RiSGZIeXpJUTZjRUUiLCJ5IjoiRUwyamJ6OUtrZTZkX29NejV4UEhWNWh1R0hpMzlLUHNySjlFa1JiZ3M0OCJ9'
,

 'jws':
'eyJiNjQiOmZhbHNlLCJjcml0IjpbImI2NCJdLCJhbGciOiJFUzI1NiJ9..w4K2o9RnoSxB8XnUvseW5GbIVfnfpqTV
gj3vj5xijrgOxrt2sg4dbMdOPyem-A63uiTCeKuUIqGfgk6OY0XiJA'

 }

 }

Verifiable Credentials in Action Technical White Paper

 Page 52 of 52

What Next?

Next Steps
The Department of Internal Affairs will:

• Continue to engage partner agencies regarding the technical white paper and get their
feedback.

• Progress Proof of Concept opportunities with partner agencies to test and refine/revise the
technical approach.

• Continue refining and understanding our approach in preparation for implementation.

	Introduction
	Document purpose
	Background
	Glossary of terms

	Verifiable Credentials Conceptual View
	Key Roles
	What is Verifiable Credential?

	Technical Overview
	Technical Choices
	Issuer Functional Capabilities
	Holder App Functional Capabilities
	Verifiable Data Registry Functional Capabilities
	Verifier Functional Capabilities
	Proposed Issuer Message Flow – Verifiable Identity Credentials Issuance by DIA
	Proposed Message Flow – Verifiable Identity Credentials Presentation by Holder App

	VC Issuance – Proposed OIDC Message Specification
	VC Presentation Cross Device – Proposed OIDC Message Specification
	What Next?
	Next Steps

